
5 Probabilistic Analysis and Randomized
Algorithms

This chapter introduces probabilistic analysis and randomized algorithms. If you
are unfamiliar with the basics of probability theory, you should read Appendix C,
which reviews this material. Probabilistic analysis and randomized algorithms will
be revisited several times throughout this book.

5.1 The hiring problem

Suppose that you need to hire a new office assistant. Your previous attempts at
hiring have been unsuccessful, and you decide to use an employment agency. The
employment agency will send you one candidate each day. You will interview
that person and then decide to either hire that person or not. You must pay the
employment agency a small fee to interview an applicant. To actually hire an
applicant is more costly, however, since you must fire your current office assistant
and pay a large hiring fee to the employment agency. You are committed to having,
at all times, the best possible person for the job. Therefore, you decide that, after
interviewing each applicant, if that applicant is better qualified than the current
office assistant, you will fire the current office assistant and hire the new applicant.
You are willing to pay the resulting price of this strategy, but you wish to estimate
what that price will be.

The procedure HIRE-ASSISTANT, given below, expresses this strategy for hiring
in pseudocode. It assumes that the candidates for the office assistant job are num-
bered 1 through n. The procedure assumes that you are able to, after interviewing
candidate i , determine if candidate i is the best candidate you have seen so far.
To initialize, the procedure creates a dummy candidate, numbered 0, who is less
qualified than each of the other candidates.

92 Chapter 5 Probabilistic Analysis and Randomized Algorithms

HIRE-ASSISTANT(n)

1 best← 0 ✄ candidate 0 is a least-qualified dummy candidate
2 for i ← 1 to n
3 do interview candidate i
4 if candidate i is better than candidate best
5 then best← i
6 hire candidate i

The cost model for this problem differs from the model described in Chapter 2.
We are not concerned with the running time of HIRE-ASSISTANT, but instead with
the cost incurred by interviewing and hiring. On the surface, analyzing the cost of
this algorithm may seem very different from analyzing the running time of, say,
merge sort. The analytical techniques used, however, are identical whether we are
analyzing cost or running time. In either case, we are counting the number of times
certain basic operations are executed.

Interviewing has a low cost, say ci , whereas hiring is expensive, costing ch .
Let m be the number of people hired. Then the total cost associated with this
algorithm is O(nci + mch). No matter how many people we hire, we always inter-
view n candidates and thus always incur the cost nci associated with interviewing.
We therefore concentrate on analyzing mch , the hiring cost. This quantity varies
with each run of the algorithm.

This scenario serves as a model for a common computational paradigm. It is
often the case that we need to find the maximum or minimum value in a sequence
by examining each element of the sequence and maintaining a current “winner.”
The hiring problem models how often we update our notion of which element is
currently winning.

Worst-case analysis

In the worst case, we actually hire every candidate that we interview. This situation
occurs if the candidates come in increasing order of quality, in which case we hire n
times, for a total hiring cost of O(nch).

It might be reasonable to expect, however, that the candidates do not always
come in increasing order of quality. In fact, we have no idea about the order in
which they arrive, nor do we have any control over this order. Therefore, it is
natural to ask what we expect to happen in a typical or average case.

Probabilistic analysis

Probabilistic analysis is the use of probability in the analysis of problems. Most
commonly, we use probabilistic analysis to analyze the running time of an algo-
rithm. Sometimes, we use it to analyze other quantities, such as the hiring cost in

5.1 The hiring problem 93

procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we must
use knowledge of, or make assumptions about, the distribution of the inputs. Then
we analyze our algorithm, computing an expected running time. The expectation is
taken over the distribution of the possible inputs. Thus we are, in effect, averaging
the running time over all possible inputs.

We must be very careful in deciding on the distribution of inputs. For some
problems, it is reasonable to assume something about the set of all possible inputs,
and we can use probabilistic analysis as a technique for designing an efficient al-
gorithm and as a means for gaining insight into a problem. For other problems, we
cannot describe a reasonable input distribution, and in these cases we cannot use
probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a random
order. What does that mean for this problem? We assume that we can compare
any two candidates and decide which one is better qualified; that is, there is a
total order on the candidates. (See Appendix B for the definition of a total order.)
We can therefore rank each candidate with a unique number from 1 through n,
using rank(i) to denote the rank of applicant i , and adopt the convention that a
higher rank corresponds to a better qualified applicant. The ordered list ⟨rank(1),
rank(2), . . . , rank(n)⟩ is a permutation of the list ⟨1, 2, . . . , n⟩. Saying that the
applicants come in a random order is equivalent to saying that this list of ranks is
equally likely to be any one of the n! permutations of the numbers 1 through n.
Alternatively, we say that the ranks form a uniform random permutation; that is,
each of the possible n! permutations appears with equal probability.

Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms

In order to use probabilistic analysis, we need to know something about the dis-
tribution on the inputs. In many cases, we know very little about the input distri-
bution. Even if we do know something about the distribution, we may not be able
to model this knowledge computationally. Yet we often can use probability and
randomness as a tool for algorithm design and analysis, by making the behavior of
part of the algorithm random.

In the hiring problem, it may seem as if the candidates are being presented to
us in a random order, but we have no way of knowing whether or not they really
are. Thus, in order to develop a randomized algorithm for the hiring problem, we
must have greater control over the order in which we interview the candidates. We
will, therefore, change the model slightly. We will say that the employment agency
has n candidates, and they send us a list of the candidates in advance. On each day,
we choose, randomly, which candidate to interview. Although we know nothing
about the candidates (besides their names), we have made a significant change.

94 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Instead of relying on a guess that the candidates will come to us in a random order,
we have instead gained control of the process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is determined
not only by its input but also by values produced by a random-number gener-
ator. We shall assume that we have at our disposal a random-number generator
RANDOM. A call to RANDOM(a, b) returns an integer between a and b, inclu-
sive, with each such integer being equally likely. For example, RANDOM(0, 1)
produces 0 with probability 1/2, and it produces 1 with probability 1/2. A call to
RANDOM(3, 7) returns either 3, 4, 5, 6 or 7, each with probability 1/5. Each inte-
ger returned by RANDOM is independent of the integers returned on previous calls.
You may imagine RANDOM as rolling a (b − a + 1)-sided die to obtain its out-
put. (In practice, most programming environments offer a pseudorandom-number
generator: a deterministic algorithm returning numbers that “look” statistically
random.)a

Exercises

5.1-1
Show that the assumption that we are always able to determine which candidate is
best in line 4 of procedure HIRE-ASSISTANT implies that we know a total order
on the ranks of the candidates.

5.1-2 ⋆
Describe an implementation of the procedure RANDOM(a, b) that only makes calls
to RANDOM(0, 1). What is the expected running time of your procedure, as a
function of a and b?

5.1-3 ⋆
Suppose that you want to output 0 with probability 1/2 and 1 with probability 1/2.
At your disposal is a procedure BIASED-RANDOM, that outputs either 0 or 1. It
outputs 1 with some probability p and 0 with probability 1− p, where 0 < p < 1,
but you do not know what p is. Give an algorithm that uses BIASED-RANDOM

as a subroutine, and returns an unbiased answer, returning 0 with probability 1/2
and 1 with probability 1/2. What is the expected running time of your algorithm
as a function of p?

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we will use in-
dicator random variables. Indicator random variables provide a convenient method

5.2 Indicator random variables 95

for converting between probabilities and expectations. Suppose we are given a
sample space S and an event A. Then the indicator random variable I {A} associ-
ated with event A is defined as

I {A} =
{

1 if A occurs ,
0 if A does not occur .

(5.1)

As a simple example, let us determine the expected number of heads that we
obtain when flipping a fair coin. Our sample space is S = {H, T }, and we define a
random variable Y which takes on the values H and T , each with probability 1/2.
We can then define an indicator random variable X H , associated with the coin
coming up heads, which we can express as the event Y = H . This variable counts
the number of heads obtained in this flip, and it is 1 if the coin comes up heads
and 0 otherwise. We write

X H = I {Y = H } =
{

1 if Y = H ,
0 if Y = T .

The expected number of heads obtained in one flip of the coin is simply the ex-
pected value of our indicator variable X H :

E [X H] = E [I {Y = H }]
= 1 · Pr {Y = H } + 0 · Pr {Y = T }
= 1 · (1/2) + 0 · (1/2)

= 1/2 .

Thus the expected number of heads obtained by one flip of a fair coin is 1/2. As
the following lemma shows, the expected value of an indicator random variable
associated with an event A is equal to the probability that A occurs.

Lemma 5.1
Given a sample space S and an event A in the sample space S, let X A = I {A}.
Then E [X A] = Pr {A}.

Proof By the definition of an indicator random variable from equation (5.1) and
the definition of expected value, we have

E [X A] = E [I {A}]
= 1 · Pr {A} + 0 · Pr {A}
= Pr {A} ,

where A denotes S − A, the complement of A.

Although indicator random variables may seem cumbersome for an application
such as counting the expected number of heads on a flip of a single coin, they are

96 Chapter 5 Probabilistic Analysis and Randomized Algorithms

useful for analyzing situations in which we perform repeated random trials. For
example, indicator random variables give us a simple way to arrive at the result of
equation (C.36). In this equation, we compute the number of heads in n coin flips
by considering separately the probability of obtaining 0 heads, 1 heads, 2 heads,
etc. However, the simpler method proposed in equation (C.37) actually implicitly
uses indicator random variables. Making this argument more explicit, we can let Xi

be the indicator random variable associated with the event in which the i th flip
comes up heads. Letting Yi be the random variable denoting the outcome of the i th
flip, we have that Xi = I {Yi = H }. Let X be the random variable denoting the
total number of heads in the n coin flips, so that

X =
n∑

i=1

Xi .

We wish to compute the expected number of heads, so we take the expectation of
both sides of the above equation to obtain

E [X] = E

[
n∑

i=1

Xi

]

.

The left side of the above equation is the expectation of the sum of n random vari-
ables. By Lemma 5.1, we can easily compute the expectation of each of the random
variables. By equation (C.20)—linearity of expectation—it is easy to compute the
expectation of the sum: it equals the sum of the expectations of the n random
variables. Linearity of expectation makes the use of indicator random variables a
powerful analytical technique; it applies even when there is dependence among the
random variables. We now can easily compute the expected number of heads:

E [X] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi]

=
n∑

i=1

1/2

= n/2 .

Thus, compared to the method used in equation (C.36), indicator random variables
greatly simplify the calculation. We shall use indicator random variables through-
out this book.

5.2 Indicator random variables 97

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected number of
times that we hire a new office assistant. In order to use a probabilistic analysis, we
assume that the candidates arrive in a random order, as discussed in the previous
section. (We shall see in Section 5.3 how to remove this assumption.) Let X be the
random variable whose value equals the number of times we hire a new office as-
sistant. We could then apply the definition of expected value from equation (C.19)
to obtain

E [X] =
n∑

x=1

x Pr {X = x} ,

but this calculation would be cumbersome. We shall instead use indicator random
variables to greatly simplify the calculation.

To use indicator random variables, instead of computing E [X] by defining one
variable associated with the number of times we hire a new office assistant, we
define n variables related to whether or not each particular candidate is hired. In
particular, we let Xi be the indicator random variable associated with the event in
which the i th candidate is hired. Thus,

Xi = I {candidate i is hired} =
{

1 if candidate i is hired ,
0 if candidate i is not hired ,

(5.2)

and

X = X1 + X2 + · · · + Xn . (5.3)

By Lemma 5.1, we have that

E [Xi] = Pr {candidate i is hired} ,

and we must therefore compute the probability that lines 5–6 of HIRE-ASSISTANT

are executed.
Candidate i is hired, in line 5, exactly when candidate i is better than each of

candidates 1 through i − 1. Because we have assumed that the candidates arrive in
a random order, the first i candidates have appeared in a random order. Any one of
these first i candidates is equally likely to be the best-qualified so far. Candidate i
has a probability of 1/ i of being better qualified than candidates 1 through i − 1
and thus a probability of 1/ i of being hired. By Lemma 5.1, we conclude that

E [Xi] = 1/ i . (5.4)

Now we can compute E [X]:

98 Chapter 5 Probabilistic Analysis and Randomized Algorithms

E [X] = E

[
n∑

i=1

Xi

]

(by equation (5.3)) (5.5)

=
n∑

i=1

E [Xi] (by linearity of expectation)

=
n∑

i=1

1/ i (by equation (5.4))

= ln n + O(1) (by equation (A.7)) . (5.6)

Even though we interview n people, we only actually hire approximately ln n of
them, on average. We summarize this result in the following lemma.

Lemma 5.2
Assuming that the candidates are presented in a random order, algorithm HIRE-
ASSISTANT has a total hiring cost of O(ch ln n).

Proof The bound follows immediately from our definition of the hiring cost and
equation (5.6).

The expected interview cost is a significant improvement over the worst-case
hiring cost of O(nch).

Exercises

5.2-1
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you will hire exactly one time? What is the proba-
bility that you will hire exactly n times?

5.2-2
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you will hire exactly twice?

5.2-3
Use indicator random variables to compute the expected value of the sum of n dice.

5.2-4
Use indicator random variables to solve the following problem, which is known as
the hat-check problem. Each of n customers gives a hat to a hat-check person at a
restaurant. The hat-check person gives the hats back to the customers in a random
order. What is the expected number of customers that get back their own hat?

5.3 Randomized algorithms 99

5.2-5
Let A[1 . . n] be an array of n distinct numbers. If i < j and A[i] > A[j], then
the pair (i, j) is called an inversion of A. (See Problem 2-4 for more on inver-
sions.) Suppose that the elements of A form a uniform random permutation of
⟨1, 2, . . . , n⟩. Use indicator random variables to compute the expected number of
inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the inputs can
help us to analyze the average-case behavior of an algorithm. Many times, we do
not have such knowledge and no average-case analysis is possible. As mentioned
in Section 5.1, we may be able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to assume that
all permutations of the input are equally likely, a probabilistic analysis will guide
the development of a randomized algorithm. Instead of assuming a distribution
of inputs, we impose a distribution. In particular, before running the algorithm,
we randomly permute the candidates in order to enforce the property that every
permutation is equally likely. This modification does not change our expectation
of hiring a new office assistant roughly ln n times. It means, however, that for any
input we expect this to be the case, rather than for inputs drawn from a particular
distribution.

We now explore the distinction between probabilistic analysis and randomized
algorithms further. In Section 5.2, we claimed that, assuming that the candidates
are presented in a random order, the expected number of times we hire a new
office assistant is about ln n. Note that the algorithm here is deterministic; for any
particular input, the number of times a new office assistant is hired will always
be the same. Furthermore, the number of times we hire a new office assistant
differs for different inputs, and it depends on the ranks of the various candidates.
Since this number depends only on the ranks of the candidates, we can represent
a particular input by listing, in order, the ranks of the candidates, i.e., ⟨rank(1),
rank(2), . . . , rank(n)⟩. Given the rank list A1 = ⟨1, 2, 3, 4, 5, 6, 7, 8, 9, 10⟩, a
new office assistant will always be hired 10 times, since each successive candidate
is better than the previous one, and lines 5–6 will be executed in each iteration of
the algorithm. Given the list of ranks A2 = ⟨10, 9, 8, 7, 6, 5, 4, 3, 2, 1⟩, a new
office assistant will be hired only once, in the first iteration. Given a list of ranks
A3 = ⟨5, 2, 1, 8, 4, 7, 10, 9, 3, 6⟩, a new office assistant will be hired three times,
upon interviewing the candidates with ranks 5, 8, and 10. Recalling that the cost of
our algorithm is dependent on how many times we hire a new office assistant, we

100 Chapter 5 Probabilistic Analysis and Randomized Algorithms

see that there are expensive inputs, such as A1, inexpensive inputs, such as A2, and
moderately expensive inputs, such as A3.

Consider, on the other hand, the randomized algorithm that first permutes the
candidates and then determines the best candidate. In this case, the randomization
is in the algorithm, not in the input distribution. Given a particular input, say A3

above, we cannot say how many times the maximum will be updated, because
this quantity differs with each run of the algorithm. The first time we run the
algorithm on A3, it may produce the permutation A1 and perform 10 updates, while
the second time we run the algorithm, we may produce the permutation A2 and
perform only one update. The third time we run it, we may perform some other
number of updates. Each time we run the algorithm, the execution depends on
the random choices made and is likely to differ from the previous execution of the
algorithm. For this algorithm and many other randomized algorithms, no particular
input elicits its worst-case behavior. Even your worst enemy cannot produce a
bad input array, since the random permutation makes the input order irrelevant.
The randomized algorithm performs badly only if the random-number generator
produces an “unlucky” permutation.

For the hiring problem, the only change needed in the code is to randomly per-
mute the array.

RANDOMIZED-HIRE-ASSISTANT(n)

1 randomly permute the list of candidates
2 best← 0 ✄ candidate 0 is a least-qualified dummy candidate
3 for i ← 1 to n
4 do interview candidate i
5 if candidate i is better than candidate best
6 then best← i
7 hire candidate i

With this simple change, we have created a randomized algorithm whose perfor-
mance matches that obtained by assuming that the candidates were presented in a
random order.

Lemma 5.3
The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is
O(ch ln n).

Proof After permuting the input array, we have achieved a situation identical to
that of the probabilistic analysis of HIRE-ASSISTANT.

The comparison between Lemmas 5.2 and 5.3 captures the difference between
probabilistic analysis and randomized algorithms. In Lemma 5.2, we make an

5.3 Randomized algorithms 101

assumption about the input. In Lemma 5.3, we make no such assumption, although
randomizing the input takes some additional time. In the remainder of this section,
we discuss some issues involved in randomly permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting the given input
array. (There are other ways to use randomization.) Here, we shall discuss two
methods for doing so. We assume that we are given an array A which, without loss
of generality, contains the elements 1 through n. Our goal is to produce a random
permutation of the array.

One common method is to assign each element A[i] of the array a random pri-
ority P[i], and then sort the elements of A according to these priorities. For ex-
ample if our initial array is A = ⟨1, 2, 3, 4⟩ and we choose random priorities
P = ⟨36, 3, 97, 19⟩, we would produce an array B = ⟨2, 4, 1, 3⟩, since the second
priority is the smallest, followed by the fourth, then the first, and finally the third.
We call this procedure PERMUTE-BY-SORTING:

PERMUTE-BY-SORTING(A)

1 n← length[A]
2 for i ← 1 to n
3 do P[i] = RANDOM(1, n3)
4 sort A, using P as sort keys
5 return A

Line 3 chooses a random number between 1 and n3. We use a range of 1 to n3

to make it likely that all the priorities in P are unique. (Exercise 5.3-5 asks you
to prove that the probability that all entries are unique is at least 1 − 1/n, and
Exercise 5.3-6 asks how to implement the algorithm even if two or more priorities
are identical.) Let us assume that all the priorities are unique.

The time-consuming step in this procedure is the sorting in line 4. As we shall
see in Chapter 8, if we use a comparison sort, sorting takes !(n lg n) time. We
can achieve this lower bound, since we have seen that merge sort takes "(n lg n)
time. (We shall see other comparison sorts that take "(n lg n) time in Part II.)
After sorting, if P[i] is the j th smallest priority, then A[i] will be in position j of
the output. In this manner we obtain a permutation. It remains to prove that the
procedure produces a uniform random permutation, that is, that every permutation
of the numbers 1 through n is equally likely to be produced.

Lemma 5.4
Procedure PERMUTE-BY-SORTING produces a uniform random permutation of the
input, assuming that all priorities are distinct.

102 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Proof We start by considering the particular permutation in which each ele-
ment A[i] receives the i th smallest priority. We shall show that this permutation
occurs with probability exactly 1/n!. For i = 1, 2, . . . , n, let Xi be the event
that element A[i] receives the i th smallest priority. Then we wish to compute the
probability that for all i , event Xi occurs, which is

Pr {X1 ∩ X2 ∩ X3 ∩ · · · ∩ Xn−1 ∩ Xn} .

Using Exercise C.2-6, this probability is equal to

Pr {X1} · Pr {X2 | X1} · Pr {X3 | X2 ∩ X1} · Pr {X4 | X3 ∩ X2 ∩ X1}
· · · Pr {Xi | Xi−1 ∩ Xi−2 ∩ · · · ∩ X1} · · · Pr {Xn | Xn−1 ∩ · · · ∩ X1} .

We have that Pr {X1} = 1/n because it is the probability that one priority chosen
randomly out of a set of n is the smallest. Next, we observe that Pr {X2 | X1} =
1/(n− 1) because given that element A[1] has the smallest priority, each of the re-
maining n−1 elements has an equal chance of having the second smallest priority.
In general, for i = 2, 3, . . . , n, we have that Pr {Xi | Xi−1 ∩ Xi−2 ∩ · · · ∩ X1} =
1/(n − i + 1), since, given that elements A[1] through A[i − 1] have the i − 1
smallest priorities (in order), each of the remaining n − (i − 1) elements has an
equal chance of having the i th smallest priority. Thus, we have

Pr {X1 ∩ X2 ∩ X3 ∩ · · · ∩ Xn−1 ∩ Xn} =
(

1
n

)(
1

n − 1

)
· · ·
(

1
2

)(
1
1

)

= 1
n!

,

and we have shown that the probability of obtaining the identity permutation
is 1/n!.

We can extend this proof to work for any permutation of priorities. Consider
any fixed permutation σ = ⟨σ (1), σ (2), . . . , σ (n)⟩ of the set {1, 2, . . . , n}. Let us
denote by ri the rank of the priority assigned to element A[i], where the element
with the j th smallest priority has rank j . If we define Xi as the event in which
element A[i] receives the σ (i)th smallest priority, or ri = σ (i), the same proof
still applies. Therefore, if we calculate the probability of obtaining any particular
permutation, the calculation is identical to the one above, so that the probability of
obtaining this permutation is also 1/n!.

One might think that to prove that a permutation is a uniform random permuta-
tion it suffices to show that, for each element A[i], the probability that it winds up
in position j is 1/n. Exercise 5.3-4 shows that this weaker condition is, in fact,
insufficient.

A better method for generating a random permutation is to permute the given
array in place. The procedure RANDOMIZE-IN-PLACE does so in O(n) time.

5.3 Randomized algorithms 103

In iteration i , the element A[i] is chosen randomly from among elements A[i]
through A[n]. Subsequent to iteration i , A[i] is never altered.

RANDOMIZE-IN-PLACE(A)

1 n← length[A]
2 for i ← 1 to n
3 do swap A[i]↔ A[RANDOM(i, n)]

We will use a loop invariant to show that procedure RANDOMIZE-IN-PLACE

produces a uniform random permutation. Given a set of n elements, a k-
permutation is a sequence containing k of the n elements. (See Appendix C.) There
are n!/(n − k)! such possible k-permutations.

Lemma 5.5
Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

Proof We use the following loop invariant:

Just prior to the i th iteration of the for loop of lines 2–3, for each possi-
ble (i − 1)-permutation, the subarray A[1 . . i − 1] contains this (i − 1)-
permutation with probability (n − i + 1)!/n!.

We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.

Initialization: Consider the situation just before the first loop iteration, so that
i = 1. The loop invariant says that for each possible 0-permutation, the sub-
array A[1 . . 0] contains this 0-permutation with probability (n − i + 1)!/n! =
n!/n! = 1. The subarray A[1 . . 0] is an empty subarray, and a 0-permutation
has no elements. Thus, A[1 . . 0] contains any 0-permutation with probability 1,
and the loop invariant holds prior to the first iteration.

Maintenance: We assume that just before the (i − 1)st iteration, each possi-
ble (i − 1)-permutation appears in the subarray A[1 . . i − 1] with probabil-
ity (n − i + 1)!/n!, and we will show that after the i th iteration, each possible
i-permutation appears in the subarray A[1 . . i] with probability (n − i)!/n!.
Incrementing i for the next iteration will then maintain the loop invariant.

Let us examine the i th iteration. Consider a particular i-permutation, and de-
note the elements in it by ⟨x1, x2, . . . , xi ⟩. This permutation consists of an
(i − 1)-permutation ⟨x1, . . . , xi−1⟩ followed by the value xi that the algorithm
places in A[i]. Let E1 denote the event in which the first i − 1 iterations have
created the particular (i−1)-permutation ⟨x1, . . . , xi−1⟩ in A[1 . . i−1]. By the

104 Chapter 5 Probabilistic Analysis and Randomized Algorithms

loop invariant, Pr {E1} = (n − i + 1)!/n!. Let E2 be the event that i th iteration
puts xi in position A[i]. The i-permutation ⟨x1, . . . , xi ⟩ is formed in A[1 . . i]
precisely when both E1 and E2 occur, and so we wish to compute Pr {E2 ∩ E1}.
Using equation (C.14), we have

Pr {E2 ∩ E1} = Pr {E2 | E1} Pr {E1} .

The probability Pr {E2 | E1} equals 1/(n−i +1) because in line 3 the algorithm
chooses xi randomly from the n − i + 1 values in positions A[i . . n]. Thus, we
have

Pr {E2 ∩ E1} = Pr {E2 | E1} Pr {E1}
= 1

n − i + 1
· (n − i + 1)!

n!

= (n − i)!
n!

.

Termination: At termination, i = n + 1, and we have that the subarray A[1 . . n]
is a given n-permutation with probability (n − n)!/n! = 1/n!.

Thus, RANDOMIZE-IN-PLACE produces a uniform random permutation.

A randomized algorithm is often the simplest and most efficient way to solve a
problem. We shall use randomized algorithms occasionally throughout this book.

Exercises

5.3-1
Professor Marceau objects to the loop invariant used in the proof of Lemma 5.5.
He questions whether it is true prior to the first iteration. His reasoning is that
one could just as easily declare that an empty subarray contains no 0-permutations.
Therefore, the probability that an empty subarray contains a 0-permutation should
be 0, thus invalidating the loop invariant prior to the first iteration. Rewrite the
procedure RANDOMIZE-IN-PLACE so that its associated loop invariant applies to
a nonempty subarray prior to the first iteration, and modify the proof of Lemma 5.5
for your procedure.

5.3-2
Professor Kelp decides to write a procedure that will produce at random any per-
mutation besides the identity permutation. He proposes the following procedure:

PERMUTE-WITHOUT-IDENTITY(A)

1 n← length[A]
2 for i ← 1 to n − 1
3 do swap A[i]↔ A[RANDOM(i + 1, n)]

5.4 Probabilistic analysis and further uses of indicator random variables 105

Does this code do what Professor Kelp intends?

5.3-3
Suppose that instead of swapping element A[i] with a random element from the
subarray A[i . . n], we swapped it with a random element from anywhere in the
array:

PERMUTE-WITH-ALL(A)

1 n← length[A]
2 for i ← 1 to n
3 do swap A[i]↔ A[RANDOM(1, n)]

Does this code produce a uniform random permutation? Why or why not?

5.3-4
Professor Armstrong suggests the following procedure for generating a uniform
random permutation:

PERMUTE-BY-CYCLIC(A)

1 n← length[A]
2 offset← RANDOM(1, n)
3 for i ← 1 to n
4 do dest← i + offset
5 if dest > n
6 then dest← dest−n
7 B[dest]← A[i]
8 return B

Show that each element A[i] has a 1/n probability of winding up in any particular
position in B. Then show that Professor Armstrong is mistaken by showing that
the resulting permutation is not uniformly random.

5.3-5 ⋆
Prove that in the array P in procedure PERMUTE-BY-SORTING, the probability
that all elements are unique is at least 1− 1/n.

5.3-6
Explain how to implement the algorithm PERMUTE-BY-SORTING to handle the
case in which two or more priorities are identical. That is, your algorithm should
produce a uniform random permutation, even if two or more priorities are identical.

